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Abstract
The conditions of the Gibbons–Hawking effect, i.e., particle production in the
Friedmann–Robertson–Walker chart of the de Sitter spacetime, are revisited.
For a theory with a massive scalar and a fermionic field it is shown that, if
one considers the Bunch–Davies vacuum state at early times, then only in
the case that the condition mc2/h̄H � 1 is fulfilled can one assure that a
thermal spectrum of radiation at temperature T = h̄H/2πkB, where kB is the
Boltzmann constant, will be obtained at late times. It is pointed out that this
important proviso (which is nothing else than the adiabatic condition, as we
shall see), is missing in several derivations of this effect in the literature, where
the thermal spectrum was obtained without imposing any restriction on the
relation between the mass of the field, m and the Hubble constant, H.

PACS numbers: 03.70.+k, 04.62.+v

1. Introduction

In a celebrated paper, some years ago, Gibbons and Hawking [1] showed that a particle detector
following the timelike trajectory of a Killing vector in the static chart of de Sitter space detects
a thermal spectrum of radiation at temperature T = h̄H/2πkB,H being the Hubble constant
and kB the Boltzmann constant. This effect was reproduced, for scalar particles, using the
mode mixing technique, that is, by calculating the β-Bogoliubov coefficient that relates two
different complete orthonormal sets of mode solutions. In de Sitter space these two sets are
solutions of the field equations in the static and in the Friedman–Robertson–Walker (FRW)
coordinates, respectively [2–5].
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Several papers have since then been published where this same result is reproduced by
just using the flat FRW chart of the de Sitter space [6–9]. In these, some of the quite recent
calculations, their authors consider the Bunch–Davies vacuum at early times [10], and then
manage to show that at late times a thermal flux of particles is created. We will here prove
that, in all these cases, when a scalar and a fermionic field are invoked (as, for instance, in [6]),
the result only strictly follows provided the important condition mc2/h̄H � 1 is satisfied, m
being the mass of the field. We will also identify in the present paper specific ingredients that
are missing from those re-derivations in order to arrive at the desired result.

We will also discuss the application of the WKB approximation to this problem, and
show that, contrary to what is claimed in the literature [11–14], the thermal spectrum does not
actually emerge in the complex WKB approach (CWKB). In section 5, taking into account
specific masses for the potential particles that could be involved at cosmological scale, we
will actually show that the relevant condition is not always fulfilled. Finally, in the appendix
we carry out in detail the diagonalization procedure for fermionic particles that we apply in
the bulk of the paper to the de Sitter spacetime, in order to calculate the fermionic particle
production.

2. Massive Klein–Gordon field in (3 + 1)-dimensional de Sitter spacetime

The metric of the (3 + 1)-dimensional flat de Sitter spacetime can be written as ds2 =
−dt2 + a2(t)

(
dx2

1 + dx2
2 + dx2

3

)
, where a(t) = eHt ,H being Hubble’s constant. In terms of the

conformal time η ≡ − 1
Ha(t)

, with −∞ < η < 0, we have ds2 = 1
H 2η2

(−dη2 +dx2
1 +dx2

2 +dx2
3

)
.

Next we consider a massive Klein–Gordon (KG) field φ, of mass m, coupled to the metric.
Performing the change of function ϕ = aφ the canonical Hamiltonian using ϕ coincides with
the Hamiltonian defined via the metrical stress–tensor for the field φ, and then we can easily
apply the diagonalization method to the field ϕ [15, 16]. The KG equation becomes

ϕ̈ − c2�ϕ +
1

η2

[
m2c4

h̄2H 2
+ 2(6ξ − 1)

]
ϕ = 0, (1)

where the dot denotes derivative with respect to the conformal time and ξ is the coupling
constant.

We now look for mode solutions of the form ϕ(η, xj ) ≡ ϕk(η) exp
(
i
∑3

j=1 kjxj

)
, with

k ≡ (k1, k2, k3). We can write the KG equation as follows:

ϕ̈k + ω2
k(η)ϕk = 0, (2)

with ωk(η) =
√

k̄2 + M̃2

H 2η2 , where we have introduced the notation k̄ ≡ ck and M̃2

H 2 ≡
M2

H 2 + 2(6ξ − 1), being M ≡ mc2/h̄.
The general solution of equation (2) can be written in terms of Hankel functions

ϕk(η) = √
η
[
AkH

(2)
ν (|k̄|η) + BkH

(1)
ν (|k̄|η)

]
, (3)

with ν ≡
√

1
4 − M̃2

H 2 . The asymptotic behavior of the Hankel functions, for |z| � 1, is well
known [17, 18]

H(1)
ν (z) =

√
2

πz
ei(z− πν

2 − π
4 )

[
1 + O

(
1

z

)]
, −π < arg(z) < 2π, (4)

H(2)
ν (z) =

√
2

πz
e−i(z− πν

2 − π
4 )

[
1 + O

(
1

z

)]
, −2π < arg(z) < π. (5)
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In order to define the vacuum state at early times we must choose the mode that satisfies
[19, 20]

ϕk(η0) = 1√
2ωk(η0)

, ϕ̇k(η0) = −i

√
ωk(η0)

2
, (6)

for η0 → −∞. This definition unambiguously gives the modes in the recent past, and the
frequency is constant and has the value k̄ (specifically, this ‘in’ vacuum state corresponds to
the Bunch–Davies vacuum). Then it is easy to verify that [19]

ϕk(η) = C

√
πη

4
H(2)

ν (|k̄|η), with C ≡ ei(|k̄|η0− πν
2 − π

4 ). (7)

Now, using the asymptotic expression for the Hankel functions at late cosmological times,
t → ∞ (η → 0−), we have, for η ∼ 0− [17],

ϕk(η)∼= − C

√
η

4π

i

ν

[
eiπν
(1 − ν)

( |k̄|η
2

)ν

− 
(1 + ν)

( |k̄|η
2

)−ν
]

. (8)

Since η < 0, if we take into account the domain of definition of the Hankel function
(equation (5)), we may write η = e−iπ |η| and then equation (8) turns into

ϕk(η)∼= − ei(−|k̄η0|− π
4 )

√
|η|
4π

1

ν

[
e−i πν

2 
(1 − ν)

( |k̄η|
2

)ν

− ei πν
2 
(1 + ν)

( |k̄η|
2

)−ν
]

. (9)

Let us now consider the functions ek,±(η) ≡ 1√
2ωk(η)

e±i
∫ η

η0
ωk(τ) dτ . An easy calculation yields

ek,±(η) = 1√
2ωk(η)

e
∓i|k̄|(

√
η2+ M̃2

H2 |k̄|2 −
√

η2
0+ M̃2

H2 |k̄|2 )
∣∣∣∣ η

η0

∣∣∣∣
∓i M̃

H

⎛
⎝
√

η2
0 + M̃2

H 2|k̄|2 + M̃
H |k̄|√

η2 + M̃2

H 2|k̄|2 + M̃
H |k̄|

⎞
⎠

∓i M̃
H

. (10)

It is a well-known difficulty that one cannot really speak about ‘particle production at time
t’ in a dynamical (time-dependent) process. One can calculate amplitudes with respect to a
given basis and speak about probabilities of finding particles in a given state, but many authors
do not admit that this state be called a ‘particle state’ unless it becomes stationary. In fact, we
are here trying to describe the change of amplitudes caused by the change of the basis between
FRW and static situations (as advanced in the introduction). Now, trying to remain as close as
possible to the physical (static) situation and then extrapolate it to the time-dependent FRW
background case, we here make use of the instantaneous Hamiltonian diagonalization method
of Zel’dovich and Starobinskii [21, 22]. That is, we choose a one parametric family of mode
solutions to equation (2), namely {fk,η(τ ), f ∗

k,η(τ )}, that satisfies the initial condition

fk,η(η) = ek,−(η), ḟk,η(η) = −iω(η)ek,−(η), (11)

and consequently diagonalizes the Hamiltonian at time η. Since {fk,η(τ ), f ∗
k,η(τ )} is a

basis of the space of solutions of equation (2), we can decompose the mode ϕk defined by
equation (6) as follows:

ϕk(τ ) = αk(η)fk,η(τ ) + βk(η)f ∗
k,η(τ ) ∀τ ∈ (−∞, 0), (12)

where αk(η) and βk(η) are the Bogoliubov coefficients that are now time-dependent due to the
definition of the instantaneous basis {fk,η, f

∗
k,η}.

In particular, for τ = η one obtains the system{
ϕk(η) = αk(η)ek,−(η) + βk(η)ek,+(η),

ϕ̇k(η) = −iωk(η)[αk(η)ek,−(η) − βk(η)ek,+(η)].
(13)

3
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The βk Bogoliubov coefficient is then given by

βk(η) = 1

2

[
ϕk(η) − i

ωk(η)
ϕ̇k(η)

]
e−1
k,+(η), (14)

and, since |ek,+(η)| = 1√
2ωk(η)

, we obtain the following expression:

|βk(η)|2 = ωk(η)

2

∣∣∣∣ϕk(η) − i

ωk(η)
ϕ̇k(η)

∣∣∣∣
2

, (15)

or

|βk(η)|2 = 1

h̄ωk(η)

1

2

[
h̄|ϕ̇k(η)|2 + h̄ω2

k(η)|ϕk(η)|2]− 1

2
. (16)

From here we see that, working in the instantaneous diagonalization approach and using the
analogy previously described, the ‘number of produced particles at time η’ is, within this
context, actually equal to the energy of the mode ϕk(η) at time η divided by the energy of the
‘particle’ at this time.

First, we consider the case M̃
H

� 1 (i.e. M
H

� 1), using now the fact that ωk(η)∼= M̃
H |η|

when |η| � M̃
H |k̄| , a simple calculation yields (when η ∼ 0−)

ϕk(η) − i

ωk(η)
ϕ̇k(η)∼= i

H

2M̃
ϕk(η) + C

√
η

4π

[(
H

M̃
− i

ν

)
eiπν
(1 − ν)

( |k̄|η
2

)ν

+

(
H

M̃
+

i

ν

)

(1 + ν)

( |k̄|η
2

)−ν ]
. (17)

In this situation ν ∼= iM
H

and equation (17) becomes

ϕk(η) − i

ωk(η)
ϕ̇k(η)∼= − iC

√
η

4π

H 2

2M2
e−π M

H 


(
1 − i

M
H

)( |k̄|η
2

)i M
H

, (18)

thus

|βk(η)|2 ∼= H 3

32πM3

∣∣∣∣

(

1 − i
M
H

)∣∣∣∣
2

eπ M
H . (19)

Using at this point [17] |
(1 + z)|2 = πz/ sin(πz), we conclude that, when η → 0−, the
β-Bogoliubov coefficient is given by

|βk(η)|2 ∼= H 2

16M2
. (20)

To obtain the thermal spectrum we need to use the so-called adiabatic interpretation of
particle creation (or adiabatic vacuum prescription) in no-stationary FRW universes (see for
details [23–26]). This method depends on the order of the WKB approximation used to define
the mode functions. Here we use the zero order (the other orders give the same result), then
the square of the β-Bogoliubov coefficient is given by [26]

|βk(η)|2 = |ϕk(η)ėk,+(η) − ϕ̇k(η)ek,+(η)|2. (21)

Inserting (9) and (10), in this formula, we obtain

|βk(0
−)|2 ∼= H

2πM

∣∣∣∣

(

1 + i
M
H

)∣∣∣∣
2

e−π M
H = (e2π M

H − 1)−1 =
(

e2π mc2

h̄H − 1
)−1

, (22)

in complete agreement with [6].

4
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In the opposite case, M̃
H

� 1 (i.e. M
H

∼= √
2 − 12ξ ), we have ν ∼= 1/2 and we can make the

approximation [18] H(2)
ν (z)∼=

√
2
πz

e−i(z−π/2), then ϕ(η)∼= C
√

1
2|k̄| e−i(|k̄|η−π/2). Thus, inserting

this expression into formula (15) with ωk(η)∼= |k̄| we conclude that

|βk(η)|2 ∼= 0, (23)

in agreement with the well-known fact that in the conformally coupled massless case, there is
no particle production.

Note that this conclusion does not coincide with the corresponding one in [9]. In
section 4 we will compare both results precisely, pointing out toward a flaw in the calculation
in [9].

Some important remarks are in order. The first one is that the minimal coupling case
ξ = 0 was previously studied in [8] in great detail. Our results here are in full agreement
with those in this reference. Second, in the massless, conformally coupled case, the frequency
ωk(η) = |k̄| does not depend on the conformal time and, consequently, in this situation there
is no particle production. Moreover, note also that the energy of the produced particles at
late times seems to diverge but this is actually not a problem, because at any finite time
there is a transition from de Sitter space to a radiation-dominated universe where there exists
a well-defined ‘out’ region. This physical situation has been carefully studied by Ford in
[27], by making use of results previously obtained by Zel’dovich and Starobinsky [21] with
the help of the diagonalization method. Essentially, equation (13) is solved there to first-
order approximation and expression (15) is employed, so that the end result obtained in this
way is finite and physically meaningful. Note, moreover, that the condition mc2/h̄H � 1
is equivalent to saying that the Hubble distance must be much larger than the Compton
wavelength (h̄/mc), and this is nothing else than the adiabatic condition |ω̇k(η)| � ω2

k(η) (see
section 3). Therefore, when this transition takes place, one is in fact calculating the number
of ‘out’ particles from the ‘in’ vacuum in the adiabatic case, where the concept of particle is
perfectly well defined and, furthermore, the results obtained are guaranteed to be independent
of the procedure that is used in order to calculate them (namely, the diagonalization method
or an alternative one).

3. Particle production in the WKB approximation

The zero-order WKB approximation is based on the formula

ϕk(η)∼= ek,−(η). (24)

Introducing this expression into (16), we get (using the diagonalization method)

|βk(η)|2 ∼= ω̇2
k(η)

16ω4
k(η)

= H 2

16M̃2

(
k̄2H 2η2

M̃2
+ 1

)−3

. (25)

N (η) ≡
∑
n∈Z

|βk(η)|2 ∼= L

16π

H 2

M̃2

∫ ∞

−∞
dz

(
z2c2H 2η2

M̃2
+ 1

)−3

= L

64cη

H

M̃
. (26)

Moreover, the density of particles produced per unit volume is

ρ(η) ≡ N (η)

2L
∼= 1

128cη

H

M̃
. (27)

In order to be able to rigorously prove the validity of this result, we need to impose the
so-called WKB bounds (see, for instance, [29–31]). Here, for simplicity, we will just use

5
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the adiabatic condition, since the WKB ansatz (24) turns out to be a good approximation
[28], as long as |ω̇k(η)| � ω2

k(η). It can be seen that, when M̃/H � 1, the adiabatic
condition is fulfilled at all time; however, in the opposite case, this condition only holds for
|η| � (

M̃/H
)2/3 |k̄|−1 and, consequently, in this last situation equation (25) is valid when

|η| � (
M̃/H

)2/3 |k̄|−1 only.
Now, we are interested in the CWKB method, that is, the WKB method in the complex

plane [32, 29, 33, 30]. We consider equation (2) with −∞ < η < ∞, which is the non-
physical case already studied in [11–14, 19]. It is clear that, since (7) has the asymptotic form
(6), when η → −∞ as well as when η → ∞, then there is no particle production at late times
[19]. However in [11–14] the authors do claim that there is particle creation, at an average
rate given by equation (22). It seems clear that this last result cannot hold. We will now point
out to a gap in the derivations in these papers.

In all the mentioned papers, to obtain the final results the CWKB method is used. In the
conformal coupling case, the frequency is given by ωk(η) =

√
k̄2 + (M/Hη)2, and since this

frequency does not have any real zero, one is faced up with an over-barrier reflection problem
[30]. It is well known that, when M/H � 1, the average number of particles produced in the
k-mode is [34]

|βk|2 ∼= e−2Im
∫
γ

ωk(τ ) dτ
, (28)

where the path in the complex plane is γ ≡ {R eiθ |0 � θ � π}, with R � M
H |k̄| . Here

ωk(τ) = |k̄|
τ

√
τ 2 + (M/Hk)2 and the cut is the interval

[−i M
H |k̄| , i M

H |k̄|
]
. Now, using the

residue theorem, we can deform this path into the following one:

γ ′ ≡ [−R,−ε] ∪
[
−ε,−ε + i

M
H |k̄|

]
∪
{

i
M

H |k̄| + εeiθ /π � θ � 0

}

∪
[
ε + i

M
H |k̄| , ε

]
∪ [ε, R].

Along this last path, it becomes clear that Im
∫
γ ′ ωk(τ) dτ = 0 and, as a consequence, that

there is no particle production in this case, in full agreement with [19].

4. Comparison with other results

A different calculation was done in [9], where the minimal coupling case was studied and
expression (22) was obtained, again without the need of imposing any restriction on the relation
between M and H. This result also contradicts equation (23). We will discover a flaw in this
derivation too.

Working with the coordinates (t, x1, x2, x3) in the minimal coupling case, the KG equation
becomes

d2φ

dt2
+ 3H

dφ

dt
+ k̄2 e−2Htφ + M2φ = 0, (29)

which is to be compared with equation (37) of [9], namely

d2φ

dt2
+ k̄2 e−2Htφ + M2φ = 0. (30)

Performing a convenient change of variables, for instance z ≡ k̄
H

e−Ht , these two equations
behave, respectively, as(

z2 d2

dz2
− 2z

d

dz
+ z2 +

M2

H 2

)
φ = 0 (31)

6
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and (
z2 d2

dz2
+ z

d

dz
+ z2 +

M2

H 2

)
φ = 0. (32)

Of the two, it is apparent that the wrong equation is (32), e.g., the Bessel equation whose
general solution is

φk(z) = AkH
(2)
ν (z) + BkH

(1)
ν (z), (33)

where ν = iM
H

. From equations (32) and (33), result (22) easily follows. However, the
argument used in [9] does not stand, since for the vacuum state at early times the function
H(1)

ν (z) is employed, when it is quite well known that the true vacuum state there is the
Bunch–Davies vacuum [10], represented by the function H(2)

ν (z).
A different way to see the flaw in [9] is to consider the (1 + 1)-dimensional case. In

this situation the conformal and the minimal coupling cases coincide and, thus, result (22) is
incompatible with the known result that in the massless conformal coupling case there is no
particle production [19]. To summarize, if we make proper use of the KG equation, equation
(31), we again obtain the same result as in section 2.

For a different situation, we now consider the conformally (or minimally) coupled
fermionic field in the (1 + 1)-dimensional de Sitter spacetime. This problem was previously
addressed in [7], however, there are some remarks to be posed to the derivations in that paper,
too. To start, a careful calculation shows that the sign of the quasi-classical solutions ek,±
cannot be right (the correct solutions being those in (10)). Also, the expansion of the Hankel
function at late time in [7] should be replaced by that given in equation (9) here. Finally, the
average number of produced fermions at late time is given, in [7], by the expression

|βk(0
−)|2 = (e2π M

H + 1)−1, (34)

without any restriction on the values of M and H. Again, this result cannot be thus general
because, in the massless case, since the field is conformally coupled, there is no particle
production, in clear contradiction with equation (34), which in the massless case yields:
|βk(0−)|2 = 1/2.

We will now derive for this case the fermionic particle production rate, by making use of
the diagonalization method, which interpretation precisely coincides, in the fermionic case,
with the zero-order adiabatic interpretation of particle creation. Let us start with a fermionic
field ψ , and consider now the field � ≡ η−1/2ψ . Then, the canonical Hamiltonian obtained
for the field � coincides with the Hamiltonian obtained via the metric and stress–tensors for
the field ψ [16] and, as a consequence, the diagonalization method can easily be applied to
the field �. To wit, the dynamical equations are [7]

ih̄�̇k = h̄

(
M
Hη

−ik̄

ik̄ − M
Hη

)
�k (35)

and the general solution of (35), when k > 0 (the case k < 0 can be dealt with in a similar
way), can be expressed in terms of Bessel functions, as

�k(η) = A
√

η

(
J−ν(k̄η)

Jν∗(k̄η)

)
+ B

√
η

(
Jν(k̄η)

−J−ν∗(k̄η)

)
, (36)

where ν ≡ 1
2 + iM

H
. The eigenfunctions of the energy operator that appears in equation (35)

are

v±(η) = 1√
2ωk(η)

(
ωk(η) ± M

Hη

)
(

ωk(η) ± M
Hη

)

±ik̄

)
(37)

7
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and, then,

v±(−∞) = 1√
2

(
1
±i

)
, v+(0−) =

(
0
i

)
and v−(0−) =

(
1
0

)
. (38)

When M/H � 1—and only in this case—we can easily verify that the mode �k , that satisfies
at early times �k(η0) = v+(η0), for η0 → −∞, is

�k(η) = C
√

η

(
e−iπνH (2)

ν (k̄η)

H
(2)
ν∗ (k̄η)

)
, (39)

where C ≡
√

πk̄
2 ei(k̄η0+ πν

2 − π
4 ). Thus, in the case M/H � 1, following the diagonalization

method (see the appendix) when η → 0−, the square of the β-Bogoliubov coefficient turns
out to be

|βk(η)|2 = ∣∣C√
η e−iπνH (2)

ν (k̄η)
∣∣2, (40)

and, finally, a simple calculation yields the result

|βk(0
−)|2 = (e2π M

H + 1)−1. (41)

To finish, we prove that in the massless case there is no particle production. The field
equation reads then

ih̄�̇k = h̄

(
0 −ik̄
ik̄ 0

)
�k (42)

and its general solution is

�k(η) = A

(
cos(k̄η)

sin(k̄η)

)
+ B

(
sin(k̄η)

− cos(k̄η)

)
, (43)

with the eigenfunctions of the energy operator being

v±(η) = 1√
2

(
1
±i

)
. (44)

By taking now

A ≡ 1√
2
[cos(k̄η0) + i sin(k̄η0)], B ≡ 1√

2
[sin(k̄η0) − i cos(k̄η0)], (45)

we have �k(η0) = v+(η0). Finally, from the diagonalization method, we get

|βk(η)|2 = |〈v−
k (η),�k(η)〉|2 = 1

2 |A − iB|2| cos(k̄η) + i sin(k̄η)|2 (46)

and, as A − iB = 0, we do obtain the announced result.

5. Conclusions

We have studied in this paper, in some detail, the issue of particle production in the flat FRW
chart of the de Sitter spacetime, for a theory with a massive scalar and a fermionic field, and
considering the Bunch–Davies vacuum state as the starting condition at early times.

A careful analysis has shown that the condition mc2/h̄H � 1 needs to be imposed if one
wants to make sure that a thermal spectrum of radiation, at temperature T = h̄H/2πkB—as
calculated 30 years ago in a seminal work by Gibbons and Hawking [1]—will be produced.
In a number of subsequent papers (some of them very recent), containing rederivations in
different settings, this important condition has just been overseen, giving the impression that
it was not necessary in order to obtain the Gibbons–Hawking radiation in the flat FRW chart
of de Sitter spacetime, what we have shown here in detail, case by case, not to be right.

8
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In fact, the fulfillment of this condition (whose derivation is rather non-trivial and quite
elusive, as we saw in this paper) could have important consequences in applications of the
Gibbons–Hawking effect at the cosmological level. In particular, it can be seen that it would
really establish a clear difference, if some very light massive fields are finally proven to
exist, as demanded by many theories which aim at explaining inflation and/or the current
accelerated expansion of our universe. To wit, this essential condition tells us that the thermal
spectrum will only be necessarily produced when the mass of the relevant field is very large
as compared with the mass-equivalent of the Hubble constant. More precisely, the constraint
mc2/h̄H � 1 is actually equivalent to say that the Hubble distance needs to be much larger
than the Compton wavelength (h̄/mc), and this is the adiabatic condition |ω̇k(η)| � ω2

k(η)

(see section 3). Therefore, we are in fact calculating the number of particles in the adiabatic
case, where the concept of particle is perfectly well defined, from the point of view of the
adiabatic vacuum prescription.

A numerical calculation readily shows that the most usually predicted neutrino and axion
masses, of the order of a small fraction of an eV, satisfy the above bound sufficiently well—the
fraction to be compared with 1 being some 20 orders of magnitude larger. However, the bound
starts to be in compromise (the fraction falls down to values of 108 to 106) for the typical
masses involved in some reference CP symmetry breaking theories, as e.g. [37]. Finally, for
the usual quintessence models, where in order to obtain an equation of state parameter (or
barotropic index) w ∼ −1, the scalar field mass must be extremely small—typically of the
order of 10−33 to 10−27 eV—the bound is no longer fulfilled.
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Appendix. Diagonalization method for the fermionic field

We describe here the diagonalization method for fermionic particles (the corresponding method
for scalar particles has been dealt within many papers, e.g. [15, 20–22, 35, 36]). First we
consider Minkowski spacetime and, to simplify, the (1+1)-dimension case. The Dirac equation
is

ih̄∂t ψ̂ = Ĥ ψ̂, (A.1)

and the field operator can be decomposed into Fourier modes as

ψ̂(t, x) =
∑
k∈Z

ψ̂k(t)
eiπkx/L

2L
. (A.2)

The field operator ψ̂k(t) satisfies an equation of the kind

ih̄∂t ψ̂k = Ĥk(t)ψ̂. (A.3)

Let v±
k (t) be eigenvectors, with eigenvalues ±h̄ωk(t), of the operator Ĥk(t). Then, if we

decompose the field operator ψ̂k(t) as

ψ̂k(t) = âk(t) e−i
∫ t

t0
ωk e− ∫ t

t0
〈v+

k ,v̇+
k 〉

v+
k (t) + b̂

†
k(t) ei

∫ t

t0
ωk e− ∫ t

t0
〈v−

k ,v̇−
k 〉

v−
k (t), (A.4)

9
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the Hamiltonian of the system diagonalizes

H(t) =
∑
k∈Z

h̄ωk(t)
[
â
†
k(t)âk(t) + b̂

†
k(t)b̂k(t)

]
. (A.5)

The operators âk(t) and b̂
†
k(t) satisfy⎧⎨

⎩
˙̂ak = −b̂

†
kA,

˙̂b
†
k = âkA

∗,
(A.6)

with A ≡ e2i
∫ t

t0
ωk e

∫ t

t0
〈v+

k ,v̇+
k 〉 e− ∫ t

t0
〈v−

k ,v̇−
k 〉〈v+

k , v̇−
k 〉. From the canonical commutation relations

and the charge conservation law it easily follows that the operators âk(t) and b̂
†
k(t) must be

related to the Bogoliubov coefficients as{
âk(t) = αk(t)âk(t0) + β∗

k (t)b̂
†
k(t0),

b̂
†
k(t) = −βk(t)âk(t0) + α∗

k (t)b̂
†
k(t0).

(A.7)

Thus, the average number of produced particles at time t from the vacuum state at time t0 is
given by |βk(t)|2.

From equation (A.6), we observe that the dynamical equations for the Bogoliubov
coefficients are{

α̇k = β∗
k A,

β̇k = −αkA
∗,

(A.8)

and, on the other hand, if we write the mode solutions as

ψk(t) = ᾱk(t) e−i
∫ t

t0
ωk e− ∫ t

t0
〈v+

k ,v̇+
k 〉

v+
k (t) − β̄∗

k (t) ei
∫ t

t0
ωk e− ∫ t

t0
〈v−

k ,v̇−
k 〉

v−
k (t), (A.9)

we easily see that the coefficients ᾱk and β̄k satisfy equations (A.8). Thus, it is clear that
ᾱk(t) = αk(t) and β̄k(t) = βk(t). Finally, we reach the conclusion that, if the mode solution
satisfies ψk(t0) = v+(t0), then the average number of particles produced in the k-mode at time
t is given by the expression

|βk(t)|2 = |〈v−
k (t), ψk(t)〉|2. (A.10)

References

[1] Gibbons G W and Hawking S W 1977 Phys. Rev. D 15 2738
[2] Lapedes A S 1978 J. Math. Phys. 19 2289
[3] Brandenberger R H and Kahn R 1982 Phys. Lett. B 119 75
[4] Brandenberger R H 1985 Rev. Mod. Phys. 57 1
[5] Mishima T and Nakayama A 1988 Phys. Rev. D 37 354
[6] Garriga J 1994 Phys. Rev. D 49 6343
[7] Villalba V M 1995 Phys. Rev. D 52 3742
[8] Mijic M 1998 Phys. Rev. D 57 2138
[9] Mendy J E B 2003 J. Math. Phys. 44 662

[10] Bunch T S and Davies P C W 1978 Proc. R. Soc. Lond. A 360 117
[11] Biswas S, Guha J and Sarkar N G 1995 Class. Quantum Grav. 12 1591
[12] Guha J, Biswas D, Sarkar N G and Biswas S 1995 Class. Quantum Grav. 12 1641
[13] Biswas S, Shaw A and Misra P 2002 Gen. Rel. Grav. 34 665
[14] Biswas S and Chowdhury I 2006 Int. J. Mod. Phys. D 15 937
[15] Grib A A, Mamayev S G and Mostepanenko V M 1976 Gen. Rel. Grav. 7 535
[16] Grib A A, Mamayev S G and Mostepanenko V M 1994 Vacuum Quantum Effects in Strong Fields (Sankt

Petersburg: Friedman Laboratory)
[17] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (New York: Dover)

10

http://dx.doi.org/10.1103/PhysRevD.15.2738
http://dx.doi.org/10.1063/1.523607
http://dx.doi.org/10.1016/0370-2693(82)90247-7
http://dx.doi.org/10.1103/RevModPhys.57.1
http://dx.doi.org/10.1103/PhysRevD.37.348
http://dx.doi.org/10.1103/PhysRevD.49.6343
http://dx.doi.org/10.1103/PhysRevD.52.3742
http://dx.doi.org/10.1103/PhysRevD.57.2138
http://dx.doi.org/10.1063/1.1500793
http://dx.doi.org/10.1088/0264-9381/12/7/005
http://dx.doi.org/10.1088/0264-9381/12/7/007
http://dx.doi.org/10.1023/A:1015938128133
http://dx.doi.org/10.1142/S0218271806008292
http://dx.doi.org/10.1007/BF00766413


J. Phys. A: Math. Theor. 41 (2008) 372003 Fast Track Communication
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